You need to be logged in to mark episodes as watched. Log in or sign up.
Season 2017
I built a bed shed, a small shelter with a sleeping platform built into it. It’s quicker to build than a large hut but can be extended later on when materials and time become available.
.. show full overview
I built a bed shed, a small shelter with a sleeping platform built into it. It’s quicker to build than a large hut but can be extended later on when materials and time become available. It’s not far from the dome shaped grass hut I built earlier. The hut took about 2 weeks to make only because it's difficult to find grass in the mountain (if built in a field it would be significantly faster).
The hut is 2 m long and 1 m wide. Four posts were hammered into the ground, two 1 m high posts (1.25 m long, 25 cm underground) on the low side and two 2m high posts (2.25m long, 25cm underground) on the high side. Onto this, a sloping rafters was lashed on with fish tail wait-a-while, a spiky palm with a vine like habit. To remove the needle like spikes from the plant, the leaves are pulled off so that the frond sheaths come with them. This made suitable lashings.
Battens were then tied to the rafters and bundles of long grass from the mountainside were collected. Using vine from the bush, the bundles were lashed to the battens starting at the low side and continuing to the top so that the grass would shed rain. Cross bars were lashed to the frame of the shed at each end to support the bed. These were at a height of 1m above the ground.
The bed frame itself was made from four poles (two 2m long and two 75 cm long) lashed together to form a rectangle 1.75m long and 75 cm wide (the ends of the two longer poles extending further to sit on the cross bars in the shed). Lawyer cane was then wrapped length ways over the frame to create horizontal threads. Then more lawyer cane was woven between these threads to form a sort of bed spring net. The bed frame was then put on the cross bars and tested to see if it could hold my weight. A mat I made from woven bark in a previous video was used for bedding and a bunch of grass for a pillow. In a rainstorm it was possible to make a fire in the space under the bed.
This structure is quick and easy to build. The bed is 1 m above the g
In this video I build a garden to grow Cassava and yams, two staple food crops. Cassava is a shrub that develops large edible roots. Yams are a climbing vine that produce large, edible
.. show full overview
In this video I build a garden to grow Cassava and yams, two staple food crops. Cassava is a shrub that develops large edible roots. Yams are a climbing vine that produce large, edible underground bulbs and smaller aerial bulbs on their vines.
I had 5 huts, but the wattle and daub hut (from the first video uploaded on this channel nearly 2 years ago) became dilapidated. I abandoned it in favour of the other huts I built and neglected the roof. This let water in destroying a wall. Also, the sweet potato patch behind it had a tree fall across it destroying the fence. So I demolished them both to make one large garden.
After removing the fence I set a fire under the fallen tree to burn it in half rather than spend the effort of cutting it with stone tools. After burning almost all the way through, it rained. So I came back later and cut through the rest of the log with stone tools. I eventually broke the tree in half. Using smaller logs as levers I moved the tree out of the garden clearing the space for the garden.
I then collected wood and built a simple fence that was woven loosely together with vine. The fence needs only to discourage large animals from entering to prevent them causing damage. Most times pigs and wallabies don’t know that food is growing in the garden and won’t try and enter if they see no reason to. Or at least that worked for the sweet potatoes so we’ll see if it works this time.
For the yam and cassava planting material I travelled far down stream to the site of my old stone hut that I built over 10 years ago. It had a corbelled dome roof that was damaged when a tree fell on it during a cyclone and it came down a few months later. The thick walls however have stayed standing for about a decade though.
Yams and cassava grew wild at this site which is one of the reasons I built the stone hut there. These plants are not native to Australia but grow wild here after having escaped from people’s gardens (similar to how wild pigs live her
I built this pottery kiln and some pottery from termite mound clay to test an alternative clay source to my usual one from the creek bank. I started by making a large grate from ordinary
.. show full overview
I built this pottery kiln and some pottery from termite mound clay to test an alternative clay source to my usual one from the creek bank. I started by making a large grate from ordinary clay. It was just under 50 cm in diameter. Next, I took dry chunks of termite nest and put them into the pit in front of the tiled roof hut. The chunks were crushed and water was added to slake the clay. The clay was trodden on to mix it. Dead palm fronds were added to the clay to stop it from cracking as it dried and to add insulation to the kiln. The mixture was trodden on again and then taken from the pit. A trench was dug to form the firebox of the kiln and a wall of clay was made in the front of the trench. A hole was dug into the wall to allow air flow into the firebox.
The grate was placed on top of the firebox and the walls of the ware chamber were built around the grate. When the kiln walls were finished, grate bars made from termite clay were placed into the firebox. Grate bars are important for fireboxes as they lift the firewood off the ground allowing air to move up through the fuel bed for more efficient combustion. Burning wood as a heap on the ground allows cold air to flow up and over the coals, cooling the kiln and leaving the air unreacted with the fire wood. It still works but is much less efficient than using grate bars. The finished kiln was 50 cm tall (above grate height), 50 cm in diameter and with walls about 12.5 cm thick. The pit/firebox was about 25 cm deep and 25 cm wide with grate bars sitting half way between the ground and the circular kiln grate above.
Next, for the pottery clay, I selected a termite mound built on red clay soil. I took it to the kiln area and slaked it with water and mixed it in a small pit. I crushed up an old grate from a previous kiln and mixed it into the termite clay as grog. Grog prevents pottery from cracking as it dries and helps prevent breakage when firing. I then shaped the clay into a small urn. I also made some barre
I built a water powered hammer called a “Monjolo”. I started by making a water spout from half a hollow log to direct water from the creek. This was set up in the creek and water flowed
.. show full overview
I built a water powered hammer called a “Monjolo”. I started by making a water spout from half a hollow log to direct water from the creek. This was set up in the creek and water flowed through it. The hammer was made from a fallen tree. I cut it to size by burning it at the points I wanted it cut (to save effort chopping). Next I carved a trough in one end to catch falling water. This was done first with a stone chisel that was then hafted to an L–shaped handle and used as an adze. This adze only took about an hour to make as I already had the chisel head and cordage made of bark fibre to bind it with.
To save further effort carving I used hot coals from the fire to char the wood in the trough. I put the coals in using “chopsticks” (unused arrow shafts) to transfer them from the pit. The coals were fanned or blown with a wooden blowpipe till the wood in the trough burned. Then the char was scraped out. The sides of the trough were sealed with clay to make sure the wooden sides did not burn away which would effectively decrease the volume of the trough. This was approximately 8 hours work over two days.
With the trough carved I made a hole in the middle of the log as a pivot point. Using the same char and scrape method I burnt a hole right through the log using hot coals and a blow pipe. Again clay was used to prevent wood burning where it was wanted. To burn through the approximately 25 cm diameter log it took about 4 hours and 30 minutes. Another hole was burnt in the end to fit the wooden hammer head and it took a similar amount of time.
A tripod lashed with loya cane was set up at the water spout. The axel of the hammer was tied to one leg, the hammer fitted onto the axel and the other end of the axel tied to another leg. The trough was positioned under the waterspout to collect water and the tripod adjusted so that the resting point of the hammer was horizontal (so water wouldn’t prematurely spill out of the trough).
The trough filled with wate
Charcoal is a valuable fuel that reaches a higher temperature than the very wood it’s made from. I’ve made some before, but with supplies running low due to furnace experiments, I
.. show full overview
Charcoal is a valuable fuel that reaches a higher temperature than the very wood it’s made from. I’ve made some before, but with supplies running low due to furnace experiments, I decided to make another large batch of charcoal in a mound. I stacked the wood into a roughly conical shape (about 1 m wide and 75 cm high) and then built a thick wall of mud around the heap (this took 6 hours). Eight air entries were made in the base of the mound and one air exit hole was left at the top of the mound to allow the volatile components of the wood to escape while creating a natural draft to keep everything burning.
The mound was lit and the flame burned backwards down the heap in the opposite direction to the draft. This protects the coal made above the level of the fire from burning as carbon dioxide rushes past instead of oxygen, preventing combustion of charcoal. Each air entry was sealed only when fire became visible through them. This is an easy way to tell when to close them up, i.e. when the fire had burned down all of the wood in the heap. When the last air entry was closed, the air exit at the top of the mound was sealed, 5 hours after starting. The next day when cool, a large arched opening was made in the side of the mound to extract the charcoal. Despite a few unburnt brands the yield and quality was good filling almost 2 baskets.
To see if the kiln was reusable, I restacked it with timber cut from a fallen gum tree branch up the mountain. Due to the difficulty in reaching into the mound I stacked the wood in criss-crossed horizontal layers. The opening was sealed with mud and the mound lit as before. This time the mound burned quickly and I had to seal it early as the timber was burning at different rates, 3 hours after starting. Some large logs remained unburnt while charcoal that had already formed started to burn up being wasted as ash.
When I opened it the next day it had still produced an ok amount of charcoal but was disappointingly low compared t
I made a pair of sandals from loya cane. Walking bare footed in the bush generally doesn't cause problems for my feet. But when repetitively carrying loads of various materials the soles
.. show full overview
I made a pair of sandals from loya cane. Walking bare footed in the bush generally doesn't cause problems for my feet. But when repetitively carrying loads of various materials the soles of the feet become cracked and split. So I made some basic footwear for the purpose of working on rough surfaces.
I cut some cane and measured out a length 6 times the length of the foot (about 1.5 m), folded it into loops and wove more cane between the loops to form the sole, adding new cane as needed. Next, I made bark fiber cordage and threaded it through the sandal to keep it on. The pair took about 1 hour to make (longer due to setting up the camera).
The sandals do protect from the ground, preventing the feet from cracking. I personally don't like wearing footwear in the forest as bare feet give better grip, especially on inclines. But for heavy work or when my feet are injured I'll wear these. These sandals are so quick to make that I've already got 2 pairs. The material used to make them (loya cane) is everywhere here but pretty much any rope like material will do. Bark fiber rope, grass, vine, flexible roots etc. will all make usable alternative materials.
The purpose of this project was to test a simplified blower design connected to a furnace. I purposely did this to show that people in most natural environments should be able to
.. show full overview
The purpose of this project was to test a simplified blower design connected to a furnace. I purposely did this to show that people in most natural environments should be able to replicate this design without difficulty. This blower differed from the previous one in several ways to simplify the construction method.
Firstly, the impellor was simply a stick as a rotor with a 40 cm wide rectangle of bark tied into a split in its end with a bark fibre cordage. A stone with a pit carved into it acted as a socket for the lower half of the rotor to spin in. If spun in the dirt the rotor can drill down and the position of the impellor can reach ground level causing the blades to bump into rocks and dirt. Later, I plastered the stone socket into the ground with mud to hold it securely in position (not shown in the video, just be aware of this solution if the socket shifts around too much).
Secondly, the housing for the blower was made in situ of ordinary mud (dirt and water on site). It was a bit more than 40 cm in internal diameter. The walls of the housing were solid mud and the roof was made of sticks covered with mud. An opening more than half the length of the impellor was left in the roof to remove the impellor for maintenance and to admit air into the blower during operation. In use, the portion of this opening near the front of the blower was covered with a tile. If left opened the blower still worked but covering it improved performance by preventing air escaping near the front. In places where water is not available, a housing shaped pit covered with sticks and dirt might work instead.
Finally, a simple length of cordage was used to drive the rotation of the impellor. This cord was placed in a notch carved into the top of the impellor rotor. The cord was wrapped around the rotor about 2.5 times. During operation the cords were pulled outwards causing the rotation. When fully unwound, the momentum of the impellor then wrapped the cord back around in the other dir
I made a brick mold that makes bricks 25 x 12.5 x 7.5 cm from wood. A log was split and mortise and tenon joints were carved using a stone chisel and sharp rocks. The mold was lashed
.. show full overview
I made a brick mold that makes bricks 25 x 12.5 x 7.5 cm from wood. A log was split and mortise and tenon joints were carved using a stone chisel and sharp rocks. The mold was lashed together with cane to prevent it from coming apart when used.
Next, I made a mixture of mud and palm fiber to make the bricks. This was then placed into the mold to be shaped and taken to a drying area. 140 bricks were made.
When dry, the bricks were then assembled into a kiln. 32 roof tiles were then made of mud and fired in the kiln. It only took 3 hours to fire the tiles sufficiently. The mud bricks and tiles were a bit weaker than objects made from my regular clay source because of the silt, sand and gravel content of the soil. Because of this, I will look at refining mud into clay in future projects instead of just using mud.
Interestingly, the kiln got hot enough so that iron oxide containing stones began to melt out of the tiles. This is not metallic iron, but only slag (iron oxide and silica) and the temperature was probably not very high, but only enough to slowly melt or soften the stones when heated for 3 hours.
The kiln performed as well as the monolithic ones I've built in the past and has a good volume. It can also be taken down and transported to other areas. But the bricks are very brittle and next time I'd use better clay devoid of sand/silt, and use grog instead of temper made of plant fiber which burns out in firing. The mold works satisfactorily. I aim to make better quality bricks for use in furnaces and buildings in future.
I built a natural draft furnace to test ideas about how hot a furnace could get without the use of bellows. Natural draft is the flow of air through a furnace due to rising hot air. The
.. show full overview
I built a natural draft furnace to test ideas about how hot a furnace could get without the use of bellows. Natural draft is the flow of air through a furnace due to rising hot air. The hot gasses in the fuel bed are more buoyant than the cold air outside the furnace causing them to rise. Fresh combustion air then enters the base of the furnace to replace the rising combustion gasses, keeping the fuel bed burning. This effect increases with: 1. the average temperature of the fuel bed relative to the outside air and 2. The height of the furnace. Two other important factors are the size of the tuyere (air entry pipe) and lump size of the fuel bed as these effect the resistance to airflow through the furnace. The furnace was tested with wood fuel and some ore was melted but produced no iron. High temperature were indeed produced (probably about 1200 c). These types of furnaces were once used for smelting copper and iron ores in around the world in ancient times, usually using charcoal as a fuel and in some cases wood too.
I designed the furnace using a formula from the book “The mastery and uses of fire in antiquity” by J.E. Rehder. It was designed to have a space velocity (air speed within the furnace) of 6 m per minute which is recommended for iron smelting. The furnace was 175 cm in total height but with a height of only 150 cm above the tuyere. The height between the air entry and the top of the furnace is what determines the strength of the draft, the space beneath the air entry is not included in the formula. The internal furnace diameter was 25 cm. The walls were about 12.5 cm thick at the base but got thinner with height. The tuyere (air entry pipe) was 7.5 cm internal diameter and about 20 cm long. The tuyere was placed into an opening in the base of the furnace and sealed with mud. The whole thing took about a week to make due to the slow drying time that was assisted by keeping a fire burning in side it. The furnace was designed to use charcoal (which i
I bought a new property to shoot primitive technology videos on. The new area is dense tropical rainforest with a permanent creek. Starting completely from scratch, my first project was
.. show full overview
I bought a new property to shoot primitive technology videos on. The new area is dense tropical rainforest with a permanent creek. Starting completely from scratch, my first project was to build a simple dome hut and make a fire. First, I took some wood, Abroma mollis, for fire sticks. I knapped a small stone blade and used it to strip the fire sicks. Palm fibre was then taken for the tinder. The fire stick kit was then placed under a palm leaf to keep it out of the rain.
Next, a stone from the creek was fashioned into a simple hand axe. This was used to cut a staff that was used to clear a path to the hut location. The location for the hut was a clearing densely crowded by native raspberry. This was then cleared using the staff and a small 2.5 m circle was levelled ready for building.
Eight 2.75 m long saplings were cut using the hand axe and brought to the site. Eight holes about 25 cm deep were hammered into the ground in a circle 2.5 m in diameter and the saplings were then planted in. The tops were brought together at the top and tied with vine. A door lintel stick was lashed to the front about 75 cm off the ground giving a low door way.
A stone flake was used to cut about 600 palm fronds. These were split and lashed horizontally to the frame creating a thatched dome. Mosquitoes are a real problem here so a fire was lit. The fire sticks from before had a hole carved in the base boards and had a notch carved to let the powder pour out.
The spindle was twirled in the socket and smoking powder poured out producing a hot coal. This then ignited the palm fibre tinder. The fire was transferred to the hut and a small hearth was made of stones. The fire makes a big difference in the number of mosquitoes which seem unable to tolerate the smoke. The dome was completed up to the top and a small cap was made from lawyer cane and fronds to place on the top to keep rain out. When not in use the cap can be removed to let in more light like a sky light.
Finally wood wa
I made some pottery from the clay in the new area to see how well it performed. A large bank of clay was exposed by the side of the creek. I dug it out using a digging stick and took it
.. show full overview
I made some pottery from the clay in the new area to see how well it performed. A large bank of clay was exposed by the side of the creek. I dug it out using a digging stick and took it back to the hut. Small sticks and stones were picked out of the clay and the whole mass was mixed to make sure there were no dry lumps. When this was done the clay was then left next to the fire to dry slightly so that it became a stiff workable material to form pots from. No further processing was done to the clay.
I formed small pinch pots from the clay by taking balls of it and pinching out the shape of the pots. Small cracks that formed while shaping were simply mended by wetting and smoothing over. Several pots were made this way. They were then left to dry completely next to the fire until they were completely dry.
To fire the pot, it was placed upside down in the hot coals and covered with sticks in a tipi fashion. The wood both acts as fuel and protects the pot from sudden changes in temperatures such as those caused by sudden winds. When the fire was burning well, I increased the temperature of the fire by fanning it with a fan palm frond. The pot glowed red hot amongst the coals and so was fired to a sufficient temperature. After waiting overnight, the pot was retrieved from the ashes and struck with a stick. The pot gave a clear ringing sound indicating it was strong and had no cracks (hollow sounds indicate the opposite). Now I had a small bowl to carry water in.
A larger pot was then made from the same clay. This time the walls of the pot were built up using the coil technique where long rolls of clay were rolled and then squashed onto previous layers. The last layer was pinched outwards to form a pot lip. A lid was made for the pot by making a flat disk of clay with a small handle for lifting. When dried the pot was then fired as before but in a larger pit outside the hut. Again, the pot was covered with wood protecting it from sudden breezes that might cool or hea
If there are missing episodes or banners (and they exist on TheTVDB) you can request an automatic full show update:
Request show update
Update requested