Mars Rising
Rocket Power (1x2)
:
The spacecraft that will take a crew, their equipment and enough fuel for the 56-million-kilometre journey to Mars will be assembled – in space. This requires a major leap of technology. The record of success isn’t good: between them, the U.S. and Russia have sent 38 unmanned probes and satellites to the Red Planet – and 22 have ended in failure.
Once on its trajectory, the crew will not be able to re-engineer or modify any component of the plans and procedures for the flight to, the exploration of, or the return from Mars. Engineers must get it all right the first time. Or the astronauts will die.
In 1957, famed scientist Werner Von Braun created a scenario for an exploratory voyage to Mars and, amazingly, current scientists still respect its basic architecture. Components of a Mars spaceship will be launched and then assembled in Earth’s orbit. Only when the spacecraft is completed will the crew be sent from Earth. When the spacecraft reaches the outer atmosphere of Mars, a transfer vehicle will take the astronauts on the short but terrifying final sprint to the surface of the Red Planet.
The U.S. is developing the Ares V rocket to carry an estimated 100 metric tons of cargo per launch. It may take 10 rocket launches, each requiring 4.3 million kilograms of thrust and a velocity of 11 kilometres-per-second to send sufficient supplies. An alternate scenario has the tons of equipment and supplies needed to sustain the astronauts sent to Mars ahead of the manned spacecraft.
Canadian Academy Award-winner James Cameron, a member of NASA’S advisory council, has a controversial proposal: reduce mass by taking only enough fuel to fly one way and manufacture fuel on Mars for the return trip.
Other fuel system ideas currently being researched include thermo-nuclear propulsion systems and a laser-like beam of super-heated charged particles.
Russian scientists are developing Klipper, a winged spacecraft to take the crew on the trip from Earth to